198 research outputs found

    Renal transplantation for lupus nephritis: non-adherence and graft survival

    Get PDF
    Objectives: Poor adherence to immunosuppressive treatment is common in patients with systemic lupus erythematosus and may identify those with lupus nephritis (LN) who have a poorer prognosis. Non-adherence has also been reported to be a potential adverse outcome predictor in renal transplantation (rTp). We investigated whether non-adherence is associated with increased rTp graft rejection and/or failure in patients with LN. Methods: Patients with LN undergoing rTp in two major London hospitals were retrospectively included. Medical and electronic records were reviewed for documented concerns of non-adherence as well as laboratory biochemical drug levels. The role of non-adherence and other potential predictors of graft rejection/failure including demographics, comorbidities, age at systemic lupus erythematosus and LN diagnosis, type of LN, time on dialysis prior to rTp and medication use were investigated using logistic regression. Results: Out of 361 patients with LN, 40 had rTp. During a median follow-up of 8.7 years, 17/40 (42.5%) of these patients had evidence of non-adherence. A total of 12 (30.0%) patients experienced graft rejection or failure or both. In the adherent group 2/23 (8.7%) had graft rejection, whilst in the non-adherent this rose to 5/17 (29.4%, p = 0.11). Graft failure was seen in 5/23 (21.7%) patients from the adherent group and 4/17 (23.5%) in the non-adherent group (p = 0.89). Non-adherent patients had a trend towards increased graft rejection, hazard ratio 4.38, 95% confidence interval = 0.73–26.12, p = 0.11. Patients who spent more time on dialysis prior to rTp were more likely to be adherent to medication, p = 0.01. Conclusion: Poor adherence to immunosuppressive therapy is common and has been shown to associate with a trend towards increased graft failure in patients with LN requiring rTp. This is the first paper to report that shorter periods on dialysis prior to transplantation might lead to increased non-adherence in lupus patients

    Antibacterial resistance and their genetic location in MRSA isolated in Kuwait hospitals, 1994-2004

    Get PDF
    BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) continues to be a major cause of serious infections in hospitals and in the community worldwide. In this study, MRSA isolated from patients in Kuwait hospitals were analyzed for resistance trends and the genetic location of their resistance determinants. METHODS: Between April 1994 and December 2004, 5644 MRSA isolates obtained from different clinical samples were studied for resistance to antibacterial agents according to guidelines from the National Committee for Clinical Laboratory Standards and the British Society for Antimicrobial Chemotherapy. The genetic location of their resistance determinants was determined by curing and transfer experiments. RESULTS: They were resistant to aminoglycosides, erythromycin, tetracycline, trimethoprim, fusidic acid, ciprofloxacin, chloramphenicol, rifampicin, mupirocin, cadmium acetate, mercuric chloride, propamidine isethionate and ethidium bromide but susceptible to vancomycin, teicoplanin and linezolid. The proportion of the isolates resistant to erythromycin, ciprofloxacin and fusidic acid increased during the study period. In contrast, the proportion of isolates resistant to gentamicin, tetracycline, chloramphenicol and trimethoprim declined. High-level mupirocin resistance increased rapidly from 1996 to 1999 and then declined. They contained plasmids of 1.9, 2.8, 3.0, 4.4, 27 and 38 kilobases. Genetic studies revealed that they carried plasmid-borne resistance to high-level mupirocin resistance (38 kb), chloramphenicol (2.8 – 4.4 kb), erythromycin (2.8–3.0 kb) and cadmium acetate, mercuric chloride, propamidine isethionate and ethidium bromide (27 kb) and chromosomal location for methicillin, the aminoglycosides, tetracycline, fusidic acid, ciprofloxacin and trimethoprim resistance. Thus, the 27 kb plasmids had resistance phenotypes similar to plasmids reported in MRSA isolates in South East Asia. CONCLUSION: The prevalence of resistance to erythromycin, ciprofloxacin, high-level mupirocin and fusidic acid increased whereas the proportion of isolates resistant to gentamicin, tetracycline, chloramphenicol and trimethoprim declined during the study period. They contained 27-kb plasmids encoding resistance to cadmium acetate, mercuric chloride, propamidine isethionate and ethidium bromide similar to plasmids isolated in MRSA from South East Asia. Molecular typing of these isolates will clarify their relationship to MRSA from South East Asia

    Pathway aberrations of murine melanoma cells observed in Paired-End diTag transcriptomes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Melanoma is the major cause of skin cancer deaths and melanoma incidence doubles every 10 to 20 years. However, little is known about melanoma pathway aberrations. Here we applied the robust Gene Identification Signature Paired End diTag (GIS-PET) approach to investigate the melanoma transcriptome and characterize the global pathway aberrations.</p> <p>Methods</p> <p>GIS-PET technology directly links 5' mRNA signatures with their corresponding 3' signatures to generate, and then concatenate, PETs for efficient sequencing. We annotated PETs to pathways of KEGG database and compared the murine B16F1 melanoma transcriptome with three non-melanoma murine transcriptomes (Melan-a2 melanocytes, E14 embryonic stem cells, and E17.5 embryo). Gene expression levels as represented by PET counts were compared across melanoma and melanocyte libraries to identify the most significantly altered pathways and investigate the expression levels of crucial cancer genes.</p> <p>Results</p> <p>Melanin biosynthesis genes were solely expressed in the cells of melanocytic origin, indicating the feasibility of using the PET approach for transcriptome comparison. The most significantly altered pathways were metabolic pathways, including upregulated pathways: purine metabolism, aminophosphonate metabolism, tyrosine metabolism, selenoamino acid metabolism, galactose utilization, nitrobenzene degradation, and bisphenol A degradation; and downregulated pathways: oxidative phosphorylation, ATPase synthesis, TCA cycle, pyruvate metabolism, and glutathione metabolism. The downregulated pathways concurrently indicated a slowdown of mitochondrial activities. Mitochondrial permeability was also significantly altered, as indicated by transcriptional activation of ATP/ADP, citrate/malate, Mg<sup>++</sup>, fatty acid and amino acid transporters, and transcriptional repression of zinc and metal ion transporters. Upregulation of cell cycle progression, MAPK, and PI3K/Akt pathways were more limited to certain region(s) of the pathway. Expression levels of c-<it>Myc </it>and <it>Trp53 </it>were also higher in melanoma. Moreover, transcriptional variants resulted from alternative transcription start sites or alternative polyadenylation sites were found in <it>Ras </it>and genes encoding adhesion or cytoskeleton proteins such as integrin, β-catenin, α-catenin, and actin.</p> <p>Conclusion</p> <p>The highly correlated results unmistakably point to a systematic downregulation of mitochondrial activities, which we hypothesize aims to downgrade the mitochondria-mediated apoptosis and the dependency of cancer cells on angiogenesis. Our results also demonstrate the advantage of using the PET approach in conjunction with KEGG database for systematic pathway analysis.</p

    A Key Role for E-cadherin in Intestinal Homeostasis and Paneth Cell Maturation

    Get PDF
    E-cadherin is a major component of adherens junctions. Impaired expression of E-cadherin in the small intestine and colon has been linked to a disturbed intestinal homeostasis and barrier function. Down-regulation of E-cadherin is associated with the pathogenesis of infections with enteropathogenic bacteria and Crohn's disease. To genetically clarify the function of E-cadherin in intestinal homeostasis and maintenance of the epithelial defense line, the Cdh1 gene was conditionally inactivated in the mouse intestinal epithelium. Inactivation of the Cdh1 gene in the small intestine and colon resulted in bloody diarrhea associated with enhanced apoptosis and cell shedding, causing life-threatening disease within 6 days. Loss of E-cadherin led cells migrate faster along the crypt-villus axis and perturbed cellular differentiation. Maturation and positioning of goblet cells and Paneth cells, the main cell lineage of the intestinal innate immune system, was severely disturbed. The expression of anti-bacterial cryptidins was reduced and mice showed a deficiency in clearing enteropathogenic bacteria from the intestinal lumen. These results highlight the central function of E-cadherin in the maintenance of two components of the intestinal epithelial defense: E-cadherin is required for the proper function of the intestinal epithelial lining by providing mechanical integrity and is a prerequisite for the proper maturation of Paneth and goblet cells

    Selective Serotonin Reuptake Inhibitor Use Is Associated with Right Ventricular Structure and Function: The MESA-Right Ventricle Study

    Get PDF
    PURPOSE:Serotonin and the serotonin transporter have been implicated in the development of pulmonary hypertension (PH). Selective serotonin reuptake inhibitors (SSRIs) may have a role in PH treatment, but the effects of SSRI use on right ventricular (RV) structure and function are unknown. We hypothesized that SSRI use would be associated with RV morphology in a large cohort without cardiovascular disease (N = 4114). METHODS:SSRI use was determined by medication inventory during the Multi-Ethnic Study of Atherosclerosis baseline examination. RV measures were assessed via cardiac magnetic resonance imaging. The cross-sectional relationship between SSRI use and each RV measure was assessed using multivariable linear regression; analyses for RV mass and end-diastolic volume (RVEDV) were stratified by sex. RESULTS:After adjustment for multiple covariates including depression and left ventricular measures, SSRI use was associated with larger RV stroke volume (RVSV) (2.75 mL, 95% confidence interval [CI] 0.48-5.02 mL, p = 0.02). Among men only, SSRI use was associated with greater RV mass (1.08 g, 95% CI 0.19-1.97 g, p = 0.02) and larger RVEDV (7.71 mL, 95% 3.02-12.40 mL, p = 0.001). SSRI use may have been associated with larger RVEDV among women and larger RV end-systolic volume in both sexes. CONCLUSIONS:SSRI use was associated with higher RVSV in cardiovascular disease-free individuals and, among men, greater RV mass and larger RVEDV. The effects of SSRI use in patients with (or at risk for) RV dysfunction and the role of sex in modifying this relationship warrant further study

    The Relationship between Impulsive Choice and Impulsive Action: A Cross-Species Translational Study

    Get PDF
    Maladaptive impulsivity is a core symptom in various psychiatric disorders. However, there is only limited evidence available on whether different measures of impulsivity represent largely unrelated aspects or a unitary construct. In a cross-species translational study, thirty rats were trained in impulsive choice (delayed reward task) and impulsive action (five-choice serial reaction time task) paradigms. The correlation between those measures was assessed during baseline performance and after pharmacological manipulations with the psychostimulant amphetamine and the norepinephrine reuptake inhibitor atomoxetine. In parallel, to validate the animal data, 101 human subjects performed analogous measures of impulsive choice (delay discounting task, DDT) and impulsive action (immediate and delayed memory task, IMT/DMT). Moreover, all subjects completed the Stop Signal Task (SST, as an additional measure of impulsive action) and filled out the Barratt impulsiveness scale (BIS-11). Correlations between DDT and IMT/DMT were determined and a principal component analysis was performed on all human measures of impulsivity. In both rats and humans measures of impulsive choice and impulsive action did not correlate. In rats the within-subject pharmacological effects of amphetamine and atomoxetine did not correlate between tasks, suggesting distinct underlying neural correlates. Furthermore, in humans, principal component analysis identified three independent factors: (1) self-reported impulsivity (BIS-11); (2) impulsive action (IMT/DMT and SST); (3) impulsive choice (DDT). This is the first study directly comparing aspects of impulsivity using a cross-species translational approach. The present data reveal the non-unitary nature of impulsivity on a behavioral and pharmacological level. Collectively, this warrants a stronger focus on the relative contribution of distinct forms of impulsivity in psychopathology

    Hox cluster duplication in the basal teleost Hiodon alosoides (Osteoglossomorpha)

    Get PDF
    Large-scale—even genome-wide—duplications have repeatedly been invoked as an explanation for major radiations. Teleosts, the most species-rich vertebrate clade, underwent a “fish-specific genome duplication” (FSGD) that is shared by most ray-finned fish lineages. We investigate here the Hox complement of the goldeye (Hiodon alosoides), a representative of Osteoglossomorpha, the most basal teleostean clade. An extensive PCR survey reveals that goldeye has at least eight Hox clusters, indicating a duplicated genome compared to basal actinopterygians. The possession of duplicated Hox clusters is uncoupled to species richness. The Hox system of the goldeye is substantially different from that of other teleost lineages, having retained several duplicates of Hox genes for which crown teleosts have lost at least one copy. A detailed analysis of the PCR fragments as well as full length sequences of two HoxA13 paralogs, and HoxA10 and HoxC4 genes places the duplication event close in time to the divergence of Osteoglossomorpha and crown teleosts. The data are consistent with—but do not conclusively prove—that Osteoglossomorpha shares the FSGD

    Vicrostatin – An Anti-Invasive Multi-Integrin Targeting Chimeric Disintegrin with Tumor Anti-Angiogenic and Pro-Apoptotic Activities

    Get PDF
    Similar to other integrin-targeting strategies, disintegrins have previously shown good efficacy in animal cancer models with favorable pharmacological attributes and translational potential. Nonetheless, these polypeptides are notoriously difficult to produce recombinantly due to their particular structure requiring the correct pairing of multiple disulfide bonds for biological activity. Here, we show that a sequence-engineered disintegrin (called vicrostatin or VCN) can be reliably produced in large scale amounts directly in the oxidative cytoplasm of Origami B E. coli. Through multiple integrin ligation (i.e., αvβ3, αvβ5, and α5β1), VCN targets both endothelial and cancer cells significantly inhibiting their motility through a reconstituted basement membrane. Interestingly, in a manner distinct from other integrin ligands but reminiscent of some ECM-derived endogenous anti-angiogenic fragments previously described in the literature, VCN profoundly disrupts the actin cytoskeleton of endothelial cells (EC) inducing a rapid disassembly of stress fibers and actin reorganization, ultimately interfering with EC's ability to invade and form tubes (tubulogenesis). Moreover, here we show for the first time that the addition of a disintegrin to tubulogenic EC sandwiched in vitro between two Matrigel layers negatively impacts their survival despite the presence of abundant haptotactic cues. A liposomal formulation of VCN (LVCN) was further evaluated in vivo in two animal cancer models with different growth characteristics. Our data demonstrate that LVCN is well tolerated while exerting a significant delay in tumor growth and an increase in the survival of treated animals. These results can be partially explained by potent tumor anti-angiogenic and pro-apoptotic effects induced by LVCN
    corecore